RSS

유방암의 진단 및 치료를 위한 종양 경계 마킹 로봇의 위치 제어 시스템 개발[아이씨엔 매거진]

24 Dec

해결 과제:

로봇에 사용된 모터의 개수만큼 엔코더와 컨트롤러를 사용하여 뛰어난 동기화 효율성과 GUI 품질을 갖춘 6 자유도(DoF) 로봇용 서보 시스템을 제작합니다.

솔루션:

NI 아날로그 입력, 모터 활성화와 엔코더 신호 피드백을 위한 타이머 카운터 보드 등의 하드웨어와 동기화 및 PID 제어 기능, GUI를 위한 LabVIEW 소프트웨어를 사용하여 제어 시스템을 구축합니다.

저자_ Junggun Kim, 국립암센터

개요 및 문제점 설명

국립암센터(NCC) 의공학과의 연구원들은 MR(자기공명영상촬영장비) 갠트리에서 환자의 유방암 종양을 표시하기 위한 MR(자기공명영상촬영장비) 호환 로봇을 연구 및 개발하고 있습니다. 국립암센터는 한국 유일의 정부 지원 암센터이며 암에 대한 연구, 의료, 교육을 선도함으로써 전국적인 암 억제 프로그램을 지원하고 있습니다. 이 프로젝트는 국립암센터의 연구비 지원을 받아 진행되었습니다.

로봇의 위치를 정확하고 안정적으로 제어하기 위해 조종기의 각 모터가 정확한 시간에 0.09° 이하의 오차로 계산된 각도에 도달해야 합니다. 이러한 기능에는 스테핑(stepping) 모터가 적합합니다. 그러나 스테핑 모터는 MR에 호환되지 않기 때문에 이 경우에는 사용할 수 없었습니다. 스테핑 모터 대신 MR 호환이 가능한 비자성 초음파 모터를 사용했습니다. 초음파 모터를 사용하는 로봇에 필요한 정확성 및 동기화 성능을 확보하기 위해 그림 1과 같이 컨트롤 및 엔코더가 장착된 서보 시스템을 구현해야 했습니다.

그림 1. 초음파 모터 및 컨트롤러를 사용한 서보 시스템

서보 시스템을 구축하기 위해서는 엔코더 신호 처리를 위한 다채널 카운터와 제어 프로그램에 구동 전압을 제공하기 위한 다채널 아날로그 출력 단위가 필수적입니다.

프로젝트 설명 및 문제 해결

유방암의 진단 및 치료 시 의사가 육안으로 맨살과 종양을 구별하는 것은 매우 어렵습니다. 이 때 MRI(자기공명 영상 촬영 장비) 를 사용하면 종양을 쉽게 구별할 수 있습니다. 이러한 MRI의 장점을 활용하기 위해 MR 환경에서 사용하기에 적합한 생검 및 시술 시스템이 활발히 개발되고 있습니다.

그 중 하나가 국립암센터의 MR 유방 생검 로봇입니다. 이 로봇의 목적은 유방암 병변이 바늘로 표시되어 있는 MR 영상을 통해 의사가 환자의 유방암 병변 위치를 쉽게 파악하고 생검과 시술을 효과적으로 실시할 수 있도록 돕는 것입니다.

그러나 이러한 시스템을 구현하기 위해서는 몇 가지 어려운 문제를 해결해야 합니다. 우선 이러한 로봇 시스템은 반드시 MR과 호환 가능해야 합니다. 즉 이러한 시스템으로 인하여 MR 영상의 왜곡이 생기거나 시스템이 MR 간트리의 강한 자기장(대략 3 테슬라)의 영향을 받는 등의 문제가 발생해서는 안 됩니다. 뿐만 아니라 MR 환경에서 안전하게 사용할 수 있어야 합니다. 이 로봇은 델타 유형의 일종으로 전반적인 구조는 다음과 같습니다:

그림 2. 로봇의 전반적인 구조(왼쪽) 및 MR 로봇 조종기(오른쪽)

역기구학을 통해 계산한 액추에이터 각도가 제어 프로그램에 전달됩니다. 그 다음에는 다리 부분의 모터가 활성화되고 세 다리 움직임의 조합에 따라 상판이 움직입니다. 상판이 움직인 후, 침투 바늘이 달린 엔드 이펙터(end effector)가 회전하고 기울어져 유방의 모형에 바늘을 삽입할 준비를 합니다. 마지막으로 종양의 위치 정보에 따라 엔드 이펙터의 바늘이 유방 코일로 삽입되어 타겟에 표시를 합니다. 종합하자면 이러한 전체 과정에서 세 가지 모션이 일어나며, 각 모션은 모터 움직임의 조합으로 구성됩니다.

안정성과 안전을 확보하기 위해서는 모든 모션이 동기화되어야 합니다. 뿐만 아니라 구동 전압 신호와 엔코더 신호를 효과적으로 처리하기 위해 편리한 DAQ 장비가 필요합니다. 또한 무엇보다 손쉽게 제어 프로그램을 작성하여 모든 제어 과정을 구현하고 이해하며 효과적으로 모니터링할 수 있어야 합니다. 이러한 이유 때문에 우리는 PCI-6733 보드, PCI-6602 보드, LabVIEW 소프트웨어를 선택했으며 NI 엔지니어 및 DAQ 교육 프로그램의 지원을 받았습니다.

하드웨어 설정

아날로그 출력과 엔코더 신호의 피드백에 두 개의 보드를 사용하여 모터의 PID 제어를 수행했습니다.

그림 3. 하드웨어의 구조

고속 아날로그 출력, 1 MS/s, 16 비트 8채널을 갖춘 PCI-6733 및 32 비트 카운터가 내장된 8채널의 PCI-6602를 사용했습니다.

소프트웨어

제어 프로그림은 LabVIEW를 사용하여 작성했습니다. LabVIEW는 프로그래밍 구문이 훨씬 직관적인 그래픽 단위로 되어 있기 때문에 프로그램을 작성하기가 쉽습니다. 또한 운영자가 여섯 개의 모터를 효과적으로 모니터링할 수 있도록 지원합니다.

그림 4. LabVIEW의 PID 제어 프로그램

기술 지원이 필요할 경우에는 NI 엔지니어 서비스와 DAQ 및 신호 컨디셔닝 교육과정 등의 교육 프로그램이 큰 도움이 되었습니다.

결론

LabVIEW를 사용함으로써 제어 프로그램을 용이하게 구축할 수 있었습니다. 그래픽 VI는 프로그램을 매우 효율적으로 이해하는 데 유용합니다. 프로그램 운영자가 프런트패널을 사용하면 편리하게 로봇을 구동하고 제어 과정을 모니터링할 수 있습니다. DAQmx 채널 생성(CI-POSITION-Angular-Encoder) VI를 사용하여 효과적인 엔코더 신호 피드백을 수행했습니다. 또한 PID VI를 통해 신속하게 PID 제어 기능을 구현할 수 있었습니다. 경로 분리 방식으로 동기화 문제도 해결했습니다. 동기화 요건을 충족시켜야 하는 모션 내에서 각 모터가 움직이며 바꾸는 모든 각도를 수백 개 ~ 천 개에 이르는 경로로 분리하였습니다. 모터 각도의 각 경로에는 LabVIEW 시스템 클럭으로 카운트한 똑같은 초 수를 할당합니다. 움직인 각도를 전부 합한 것이 모터의 동기화 움직임이 됩니다.

프로토타입 로봇에서는 합리적인 에러 수준(2 mm 이하)의 뛰어난 위치 제어 성능을 구현할 수 있었습니다. 이 에러에 대해서는 알고리즘 및 기계적인 관점에서 논의가 이루어질 것입니다.

저자 프로필:

Junggun Kim

Department of Biomedical Engineering, National Cancer Center

Ilsan

solafide@ncc.re.kr

출처. 한국내쇼날인스트루먼트 http://www.ni.com

Advertisements
 
Leave a comment

Posted by on December 24, 2015 in CaseStory

 

Tags: , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
%d bloggers like this: